Noncommutative Two-tori with Real Multiplication as Noncommutative Projective Varieties
نویسنده
چکیده
We define analogues of homogeneous coordinate algebras for noncommutative two-tori with real multiplication. We prove that the categories of standard holomorphic vector bundles on such noncommutative tori can be described in terms of graded modules over appropriate homogeneous coordinate algebras. We give a criterion for such an algebra to be Koszul and prove that the Koszul dual algebra also comes from some noncommutative two-torus with real multiplication. These results are based on the techniques of [14] allowing to interpret all the data in terms of autoequivalences of the derived categories of coherent sheaves on elliptic curves.
منابع مشابه
On complex and noncommutative torus
To every non-singular elliptic curve (complex torus) we assign a C∗algebra Tθ = {u, v | vu = e uv} known as noncommutative torus. It is shown that morphisms of elliptic curves generate Morita equivalence of the corresponding noncommutative tori. Real number θ we call projective curvature attached to the elliptic curve. It is proved that projective curvatures of isomorphic elliptic curves are mo...
متن کاملNoncommutative Geometry and Arithmetic
This is an overview of recent results aimed at developing a geometry of noncommutative tori with real multiplication, with the purpose of providing a parallel, for real quadratic fields, of the classical theory of elliptic curves with complex multiplication for imaginary quadratic fields. This talk concentrates on two main aspects: the relation of Stark numbers to the geometry of noncommutative...
متن کاملTitle: Solvmanifolds and Noncommutative Tori with Real Multiplication
We prove that the Shimizu L-function of a real quadratic field is obtained from a (Lorentzian) spectral triple on a noncommutative torus with real multiplication, as an adiabatic limit of the Dirac operator on a 3-dimensional solvmanifold. The Dirac operator on this 3dimensional geometry gives, via the Connes-Landi isospectral deformations, a spectral triple for the noncommutative tori obtained...
متن کاملSolvmanifolds and noncommutative tori with real multiplication
We prove that the Shimizu L-function of a real quadratic field is obtained from a (Lorentzian) spectral triple on a noncommutative torus with real multiplication, as an adiabatic limit of the Dirac operator on a 3-dimensional solvmanifold. The Dirac operator on this 3-dimensional geometry gives, via the Connes–Landi isospectral deformations, a spectral triple for the noncommutative tori obtaine...
متن کاملProjective Modules over Noncommutative Tori Are Multi-window Gabor Frames for Modulation Spaces
In the present investigation we link noncommutative geometry over noncommutative tori with Gabor analysis, where the first has its roots in operator algebras and the second in time-frequency analysis. We are therefore in the position to invoke modern methods of operator algebras, e.g. topological stable rank of Banach algebras, to exploit the deeper properties of Gabor frames. Furthermore, we a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008