Noncommutative Two-tori with Real Multiplication as Noncommutative Projective Varieties

نویسنده

  • A. POLISHCHUK
چکیده

We define analogues of homogeneous coordinate algebras for noncommutative two-tori with real multiplication. We prove that the categories of standard holomorphic vector bundles on such noncommutative tori can be described in terms of graded modules over appropriate homogeneous coordinate algebras. We give a criterion for such an algebra to be Koszul and prove that the Koszul dual algebra also comes from some noncommutative two-torus with real multiplication. These results are based on the techniques of [14] allowing to interpret all the data in terms of autoequivalences of the derived categories of coherent sheaves on elliptic curves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On complex and noncommutative torus

To every non-singular elliptic curve (complex torus) we assign a C∗algebra Tθ = {u, v | vu = e uv} known as noncommutative torus. It is shown that morphisms of elliptic curves generate Morita equivalence of the corresponding noncommutative tori. Real number θ we call projective curvature attached to the elliptic curve. It is proved that projective curvatures of isomorphic elliptic curves are mo...

متن کامل

Noncommutative Geometry and Arithmetic

This is an overview of recent results aimed at developing a geometry of noncommutative tori with real multiplication, with the purpose of providing a parallel, for real quadratic fields, of the classical theory of elliptic curves with complex multiplication for imaginary quadratic fields. This talk concentrates on two main aspects: the relation of Stark numbers to the geometry of noncommutative...

متن کامل

Title: Solvmanifolds and Noncommutative Tori with Real Multiplication

We prove that the Shimizu L-function of a real quadratic field is obtained from a (Lorentzian) spectral triple on a noncommutative torus with real multiplication, as an adiabatic limit of the Dirac operator on a 3-dimensional solvmanifold. The Dirac operator on this 3dimensional geometry gives, via the Connes-Landi isospectral deformations, a spectral triple for the noncommutative tori obtained...

متن کامل

Solvmanifolds and noncommutative tori with real multiplication

We prove that the Shimizu L-function of a real quadratic field is obtained from a (Lorentzian) spectral triple on a noncommutative torus with real multiplication, as an adiabatic limit of the Dirac operator on a 3-dimensional solvmanifold. The Dirac operator on this 3-dimensional geometry gives, via the Connes–Landi isospectral deformations, a spectral triple for the noncommutative tori obtaine...

متن کامل

Projective Modules over Noncommutative Tori Are Multi-window Gabor Frames for Modulation Spaces

In the present investigation we link noncommutative geometry over noncommutative tori with Gabor analysis, where the first has its roots in operator algebras and the second in time-frequency analysis. We are therefore in the position to invoke modern methods of operator algebras, e.g. topological stable rank of Banach algebras, to exploit the deeper properties of Gabor frames. Furthermore, we a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008